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It is shown analytically that the flashing annihilation term of a Verhulst kinetic leads to the power-law
distribution in the stationary state. For the frequency of switching slower than twice the free growth rate this
provides the quasideterministic source of a Lévy noise at the macroscopic level.
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I. INTRODUCTION

1 / f noise �1–6� and power-law distributions �6–9� are
widely observed signatures of anomalous behavior �7,10�.
Such phenomena are related to the scale invariance of con-
sidered systems and appear in different domains of natural
and social sciences. Their universal character is partially ex-
plained on the statistical manner as a consequence of the
central limit theorem for scaleless processes, where the
Gaussian distribution is replaced by appropriate �-stable dis-
tribution �7,10�. This corresponds to the use of the Lévy
noises to describe fluctuations or fractional dynamics at the
level of Fokker-Planck equation �11,12�. Anomalous behav-
ior can also be obtained for nonlinear systems driven by
�conventional� multiplicative Gaussian white noise �8,6�,
particularly for the Lotka-Volterra �or Malthus-Verhulst�
model �8�. In any case processes exhibiting fat-tailed distri-
butions are subjected to large fluctuation, so within certain
stochastic description it is difficult to distinguish to which
extent such behavior is an intrinsic property of the kinetics
and to which extent it is simply the reflection of the presence
�and specific properties� of noise. The source of the possibly
intense noise is known for thermodynamical critical systems.
The search for explanation of scale invariant phenomena in
generic systems is still unfinished �2–6,8�. Particularly, it
is suggested in Ref. �2�, see also Ref. �5�, that the 1 / f noise
in a membrane channel is produced by random switching
between both conducting states, rather than by inherent prop-
erties of ion transport. Similarly, the importance of
activation-deactivation processes is addressed in Ref. �3�.

In the present paper we are going to show analytically that
the asynchronous switching between generic pure Malthu-
sian and Verhulst-type kinetics leads to the Pareto distribu-
tion in the stationary state. The result seems interesting for
few reasons. The logistic equation is used, which is the basic
model of evolution for social sciences �13,14�. The power-
law distribution was identified by Pareto to describe the so-
cial statistics, namely the distribution of �large� wealths. The
model is quasideterministic, so the asymptotic power-law be-
havior has the kinetic origin only, coming as a result of bal-
ance between Malthusian growth and Verhulstian saturation.
Finally, our result supports the general opinion of Ref. �2�
about possible sources of anomalous behavior.

II. MODEL

Power-law behavior may be considered as an intermediate
one between divergent and bounded kinetics. Let us note that
the Malthus equation,

ẋt = ax , �1�

where a is a positive difference between birth and death rate,
leads to the exponential growth of population. Taking into
account the Verhulst competition coefficient bx�, ��0 �and
equal unity for the “true” Verhulst model�, depending on the
actual size of population,

ẋt = ax − bx�+1, �2�

one obtains, instead of unbounded trajectories, the mono-
tonic relaxation to the stationary value

xst = �a/b��, � = 1/� , �3�

with the relaxation time

T = 1/�a . �4�

So, if the annihilation term of Eq. �2� is absent �b=0� the
kinetic is divergent and as long as b�0 the kinetic is
bounded. Thus one expects that the “flashing” annihilation
term, temporarily switched on and off, may result in a
power-law distribution for the asymptotic state. Let us sim-
ply assume a �Markovian� binary and asynchronous charac-
ter of a switching process

b�t� = b�1 + �It� , �5�

where It= �−1�Nt, where Nt is a Poisson process with param-
eter � and �= +1 or −1 with probability 1 /2. It means that
the evolution consist of periods of active annihilation �with a
coefficient 2b� separated by periods of a free growth. The
length of the periods is random with the average equal �−1.

Note that Eq. �2� is probably the most frequently studied
one if stochastic effects on nonlinear kinetics are considered
�see, e.g., �15� and references therein�. The case of additive
noise corresponds to an overdamped Brownian motion in
some external potential and it is particularly important for
nonequilibrium thermodynamics. The cases of multiplicative
noise came both from population dynamics as the random
growth rate or random carrying capacity models �13,14� and
physical studies of a critical slowing down �16� and noise-
induced transitions �17,15�.

III. CRITICAL �2-DEPENDENCE OF MOMENTS

The Bernoulli equation �2� driven by dichotomous Mar-
kov process has been already considered �18,19�. Particu-
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larly, in Ref. �19� the transient behavior of Eq. �2� with non-
linear coupling �5�, ����1, has been examined and in the
limit t→	 the following formula for the stationary moments

�xs�st = xst
s

2F1� s�

2
;
s� + 1

2
;1 + 
;�2	 , �6�

where


 = �/�a − 1/2, �7�

was obtained. The value �2=1 is critical with respect to the
convergence of the hypergeometric series �6� �branch point
of the function� and for the critical exponent

1 + 
 − s� − 1/2 
 ��/a − s�� � 0, �8�

the right-hand side of Eq. �6� diverges at �2=1. The condi-
tion �8� clearly shows the existence of fat-tail

P�x� � x−1−�/a �9�

for large x.

IV. STATIONARY PROBABILITY DENSITY

The stationary probability density is formally given by the
inverse Mellin transformation �with respect to s� of Eq. �6�.
The more convenient way of computation is to apply the
so-called quadratic transformation of the hypergeometric
function �20�

�xs�st = xst
s �1 + ��−�s

2F1�s�;
1

2
+ 
;1 + 2
;

2�

1 + �
	 �10�

and then use of Euler’s integral representation

�xs�st =
xst

s �1 + ��−�s

B��,�� �
0

1

dt t�−1�1 − t��−11 −
2�t

1 + �
�−�s

,

�11�

where �=1 /2+
 and B is the beta function. Introducing a
new variable �= �b�1+�−2�t� /a�−� we obtain finally

�xs�st = �
xl

xr

d� P����s, �12�

where

P�x� = N−1x−�−1��2 − �1 − ax−�/b�2�
−1/2, �13�

and x� �xl ,xr�,

xl =  a

b�1 + ������

, xr =  a

b�1 − ������

. �14�

The normalization constant in Eq. �13� is equal to N
=B�� ,���2����2
b / ��a�. Note that in the case of interest,
���=1, the right boundary xr→	 and

P�x�  x−1−�/a�2 − ax−�/b�
−1/2, �15�

where x� ��a /2b�� ,	), in agreement with Eq. �9�.
The stationary probability density �13� may also be ob-

tained by considering the stochastic Liouville equation. In

fact for dichotomous noise the explicit expression is known
for arbitrary “drift” and “diffusion” term in the Langevin
equation �17,21�. Such approach is however useless if tran-
sient properties are considered. It is the special property of
the Bernoulli equation that can be solved as the explicit func-
tional depending on noise realization. In a number of cases
the �functional� averaging can be done effectively �16,15�
leading to time-dependent quantities.

V. NOISE-INDUCED TRANSITIONS

Let us remember that in the present work we consider
Eqs. �2� and �5� with ���=1 as a noiseless evolution consist-
ing of two essentially different �and randomly switched�
modes of deterministic kinetics. On the other hand the same
model, especially for ����1, may be treated as a stochastic
kinetic with nonlinearly coupled parametric noise, when the
fluctuation of a coefficient b is described by a zero mean
dichotomous color noise �t
b�It, ��t�0�=b2�2e−2�t, of a cor-
relation time � and intensity D,

� = �2��−1, D = b2�2� . �16�

From this point of view it is worth analyzing the � and D
dependence within the context of so-called noise-induced
phase transitions �17�. The case �2=1 corresponds to the
critical line b−2D /�=1 in Fig. 1 and to the “true” transition,
which is reflected by singular �2-dependence of observables,
Eq. �6�, and related power laws. Below this line the kinetic is
bounded and consequently the support of stationary distribu-
tion is finite, Eq. �14�. Above the line the system is unstable
and xt rapidly approaches infinity �after finite time�. At the
critical line the stationary states are the semiaxis distribu-
tions �lower curves in Fig. 1�, Eq. �15�, exhibiting fat tails
with indices �=� /a. The dependence on the correlation time
is also interesting. If the frequency of switching � is small
�long correlations�, 
−1 /2
� /�a−1�0, both boundaries
xl and xr—which are the stationary values �3� of a determin-
istic kinetics �2� with coefficients b�1+ ���� and b�1− ����
respectively—are attractive, the probability density �13� has
a minimum and it is convex down. In contrast for � greater
than the relaxation rate �a, Eq. �4�, the boundaries become
repulsive. P�x� is then unimodal. The �=�a �or �
=1 / �2�a�� is a critical value with respect to the noise-
induced transition in probability density.

VI. EXACT PARETO DISTRIBUTION

The case �=�a, see the vertical line in Fig. 1, is excep-
tional for other reasons. The stationary distribution is then
purely power, P�x�x−1−�, and neither diverges nor vanishes
at the boundaries �14�. And for ���=1, at the critical point
common for both lines, it becomes the exact Pareto distribu-
tion

P�x� = �a�/2b�x−1−�, x � �a/2b��. �17�

Moreover, the case �=�a was the nontrivial one for which
the time-dependent transient moments were found in the
closed analytical form �19�
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�xt
s� = e−�at�xs�t;0� + xs�t;2b��/2 +

a

2b

� � 1

1 − s�
�xs−��t;2b� − xs−��t;0�� , if � � s ,

s ln�x�t;0�/x�t;2b�� , if � = s ,
�
�18�

where

x�t;b� = �x0
−�e−�at + b�1 − e−�at�/a�−1/� �19�

is the solution of Eq. �2� for a constant a and b parameters.
Using the asymptotic forms x�t ;0�=x0eat and x�t ;2b�
→ �a /2b��, one concludes that the higher order, s��, tran-
sient moments diverge exponentially

�xt
s�  e�s−��at �20�

and for the marginal case s=��=� /a�

�xt
�� → const +

a2�

2b
t �21�

grows linearly for long times. Note that according to Eq. �15�
or Eq. �9� the value of the ratio �=� /a �frequency of switch-
ing by the rate of a free growth� specifies the order of the
lowest divergent moment. In the “double-critical” case of
exact Pareto distribution �17� it is simultaneously equal to
the value of a “degree of nonlinearity” �. Thus, for the most
important true Verhulst or so-called Stratonovich �with �
=2, corresponding to the quartic potential� model, it means
that it is the mean value or the variance, respectively, that
grows linearly with time, Eq. �21�.

VII. CONCLUSIONS

The anomalous systems exhibit large fluctuations which
are difficult to explain dynamically within standard theories,

for instance, as a result of an additive Gaussian diffusion.
Thus such a behavior is frequently joined with the presence
of a “large” driving noise, e.g., a Lévy noise or a multiplica-
tive Gaussian noise. On the other hand it was suggested that
certain aspects of such behavior are rather related to some
hierarchical structure of kinetic processes at the deterministic
level �2,3,5�. This idea was exploited in the present work for
exactly solvable generic model �2� and �5�. The general be-
havior of the system depends on two things: On the mutual
relation between � and a �or �a� and on the value of �2,
namely whether �2�1 or �2=1.

Let �2�1 �i.e., below the critical line in Fig. 1�. If fre-
quency � is smaller than the rate of relaxation processes �a
the xt “hardly” follows b�t�, Eq. �5�, switching between some
values located close to xl or xr, Eq. �14�, respectively �right
part of plot�. Successive �“rare” and “short”� moves up and
down are associated with values b�1− ���� and b�1+ ���� in
Eq. �2�, respectively, and in principle look like different de-
terministic processes. In the opposite case �left part of plot�,
���a, the evolution looks more like the Verhulst kinetics
with the averaged value b=b�t� of annihilation coefficient.
The distribution of x is unimodal, however still with a rather
wide maximum, located somewhere in a middle of the sup-
port. The value �=�a is critical for so-called noise induced
transition. This transition is formally controlled by correla-
tion time of the noise.

The case of �2=1 is of particular interest for the present
work and may be formally considered as the “true” transi-
tion, which is indicated by singular dependence of moments
and related power laws. This transition is controlled by the
noise intensity. The asymptotic distribution of x is given by
Eq. �15�. P�x� has a fat-tail with the index �=� /a. The dis-
tributions with ��2 belong—via central limit theorem—to
the basin of attraction of appropriate Lévy �-stable distribu-
tion. Thus the kinetic �2� and �5� with randomly flashing
annihilation term may be treated as a source of a Lévy noise

FIG. 1. �Color online� Phase
diagram on �� ,D� plane, Eq. �16�,
for Stratonovich model �=2 and
dimensionless units a=b=1. The
vertical line �=0.25 is related to
noise-induced transition in the
shape of probability density. The
monotonic semiaxis distributions
corresponding to D=��0.25 be-
long to the basin of attraction of
Lévy �-stable distribution �with
�=��. Insets: Plots of normalized
P�x� vs x for particular values of
�
 ,��� �1 /4,1 /2,2�� �3 /10,1�.
The location of �
 ,�� points on
plane are marked by black dots,
which correspond to coordinates
�=1 /10,1 /4,1 /3 �or �=5,2 ,3 /2,
respectively� and D
=0.009,0.0225,0.03.
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at the macroscopic level, if the frequency of switching is
small enough, ��2a, or, equivalently, if the correlation time
is sufficiently long �� �4a�−1. For the Stratonovich model,
which is presented in Fig. 1, this corresponds precisely to

positions on the line right from the critical point �with �
= �2�a�−1�. If the frequency is large, ��2a, or the correla-
tions are short, P�x� still has a fat tail; however, it corre-
sponds to the Gaussian distribution via central limit theorem.
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